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Interaction of a soliton with a continuous wave packet
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We analyze the scattering of a soliton from a continuous wave packet of arbitrary shape in a fiber, theoreti-
cally as well as numerically. Solitons recover their original shapes and velocities after collisions and the effect
of collisions is described by the change of velocities of solitons. The theoretical predictions based on a
WKB-type approximation are in a good agreement with numerical results.
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One of the important problems in soliton communications In this paper, we study the scattering of soliton with
is the soliton-continuum interaction. It was found that thearbitrary-shaped wave packets, starting from the soliton-
collision of a wave packet with a soliton shows a change ofcontinuum solution. We introduce a WKB-type approxima-
the soliton position by the perturbing wave packet. This ef-tion for the theoretical interpretation of these scatterings. Our
fect may be important in understanding phenomena such dBtention is to generalize the result of REJ] such that it has
the Gordon-Haus jittef1], bit errors in lumped filter$2,3], no Ilmltatlon.o.f Iow-mtensny wave packets. Thus, the main
and the pulse self-ordering in soliton fiber ring lasgts].  €ffect of collisions with a wave packet of general shape can
Gordon[6] was the first to study the soliton-continuum sys- € ascribed to the change of the velocity of solitons during
tem using the perturbed nonlinear Satlirger equation. But collisions. This approximation explains numerical results

the perturbation on the soliton was a second-order effect anff"y yveII except _for wave .pac.kets h.aving a rapidly varying
did not show up in his study. amplitude or having very high intensity. Note that there exist

More general treatment of this problem, especially for theno known exact solutions for collisions of solitons with

case of high-intensity wave packets, is shown in F@l arbitrary-shaped wave packets in the NLSE except the
9 y W P ’ . ’ §0Iiton-cnoidal waveincluding the continuumcase.
based on the exact solution of the soliton-continuum wave o

: - : We first start with numerical analyses. Figure 1 shows
the nonlinear Schuiinger equationNLSE). They analyze  ,,nerical results simulating typical collisions of solitons

the scattering of a soliton from a continuous wave packef i, wave packets having shape (@j Gaussian type ang)
having aconstantamplitude in a fiber, theoretically as well ¢osine type. These figures show that solitons restore their
as numerically. Solitons were found to recover their originalyriginal shapes and velocities after collisions, even though
shapes and velocities after collisions, while shapes of congney |ose their identities during collisions. Despite their in-
tinuous waves are nearly preserved during collisions. Theyrinsic instabilities[10], finite wave packets were also found
describe the effect of collisions by the change of velocities oto maintain their identities more or less.

solitons and found that the theoretical predictions are in a The propagation of light waves in a fiber is described by
good agreement with numerical results. This type of apthe NLSE

proach was further developed using another interesting solu-

tion of the NLSE, the collision of soliton-cnoidal wave, in 2

i — _ 2.
Ref.[8], and was used to describe the soliton interaction with I Ut St 2l y=0, (1)
nonconstant continuous waves having moderately strong in-
tensity. where T=t—x/vq is the retarded time. As an integrable

In this respect, it is required to broaden the range of theequation, the NLSE has many important solutions. Most well
oretical applicability of above approach to more general type&nown is the soliton solution,
of scattering phenomena, that is, the soliton scattering from

arbitrary-shapedwvave packets havinfinite width In fact, a Peo(T,X)=A secli2Awx+AT)
research along this line was already pursued by Hdwual. o,
[9]. They analyze the effect starting from the two-soliton Xexp( —IWX+IAX—IwT). ()

solution and take the limit aflow intensity and broad width

of one soliton, and they infer the velocity change of theAnother important one is the continuous wave,

soliton to arbitrary-shaped but low-intensitywave packets.

Note that the collision effect of two solitons has been de- Yol TX)=p expi[vT/2+2p?x—v2x/4]), (©)]

scribed by the phase and time shift. So this notion was still

preserved in scatterings of soliton from wave packets, whiclwherev is the velocity of the continuous wave. Recently,

agrees with the results in Refg,8]. there appears a nonlinearly superposed solutigsaliton +
continuous wavesystem[7] that was constructed using the
Darboux-Baklund transformatiofDBT) [11]. This solution

*Email address: hjshin@khu.ac.kr was found to be convenient for application to real physical

1063-651X/2003/6(1)/0176024)/$20.00 67 017602-1 ©2003 The American Physical Society



BRIEF REPORTS

FIG. 1. Soliton scatterings from a finit@) Gaussian,b) cosine wave packet. They are obtained using the split-step fast-Fourier-

transform algorithm.
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FIG. 2. Results from the finite Gaussian wave

for both figures aréA=1.84, w=—0.7.
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FIG. 3. Results from the finite cosine wave pact@tAx vs D for p=0.5, 1.0, 1.5, 2.0, 2.5p) Ax vs p for D=4.5. Soliton parameters

for both figures aré=1.84, w=—0.7.
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situations. Especially, its DBT parameter(w+iA)/2 de- tinuous wave. The velocity of the soliton during its collision
scribes the amplitudeA and the velocity of the soliton with the continuous wave changes (fr simplicity, we
vg/(1—2v4w) in Eq.(2) when it is located outside the con- studyv=0p 4= casg

Usol+ow=— REV(A—iw)*—4p?]/Re V(A—iw)*—4p*(w+iA)]. 4
|
We now introduce a WKB-type approximation. It describes p(T)=pcod#T/(2D)) for —D<T<D,
the velocity of a soliton in a continuous wave as —0 otherwise ®)
vwie(T) ~Vsortonl (P=P(T)), 5) Figure 4 plots the result from the cnoidal wave packet,

when a continuous wave has slowly varying amplitpge).

Below, we will present some numerical results that show the p(T)=pdn(pT,k). 9

validity of the WKB-type approximation. Figure 2 plots the

moving distanceAx of a soliton in a time intervak (D Contrary to the previous cases, there exist exact theoretical

+ 8)~(D+ ) passing through a Gaussian wave packet, results for the cnoidal wave packet. The numerical results
(dotted curvepas well as the exact theoretical results are

p(T)=p exp— T2/D?) for D<T<D, from R.ef. [E_3] and .vve.add the results from the WKB-type
. approximation. This figure shows that the exact theoretical
=0 otherwise. (6)  calculation in Ref[8] gives essentially the same results with

the WKB-type approximation using E¢4) except for largek
Below we will take 6=3. The dotted curve is the result of values k=0.96). Note that the WKB-type approximation
numerical analyses. Theoretical valugslid line) are ob- results in a large deviation from the exact calculatiork at
tained using the WKB-type approximation such that =0.96, because the amplitude of cnoidal wave fluctuates
very fast and the WKB-type approximation becomes poor in
bis this case k: the modulus of the J_aco_bi fL_Jn(_:tibnOn the
AX:J vwe(T)dT. @ other hand, the WKB-type approximation is in good accor-
- dance with the exact calculation as the modltusecomes
small, where the amplitude of cnoidal wave varies mildly

Numerical results are in well accordance with theoretical val2nd the WKB-type approximation v\;orks welht k=0, the
ues for wide range oD in the plot (@ of Ax vs D (p  ¢hoidal wave becomes a plain wave

=0.5,1,1.5,2 and for wide range op in the plot(b) of Ax Finally, Fig. 5 shows the average velocity

vs p (D=4.5) without any fitting parametef42]. Note that

there are regions, for example, larBeregion forp=2 in _i K TdT (10)
Fig. 2@), where the strong modulational instability of the T owke(T)

continuous wave does not permit the identification of the

soliton any more. Figure 3 plots the result from the cosineyf 5 soliton inside the cnoidal wave calculated by the WKB-
wave packet, type approximatior(solid line), which is compared with the
exact result from Refl8] (dashed ling[13]. It reveals that
the WKB-type approximation is in well accord with the ex-
act results untip~1.4 for the case ok=0.8 ork~0.6 for

K=0.96 (exp) ¢
k=0.96 (exact) -
ke0.96 (W) - 1

g k‘i_ggie(:axg) o the case op=1.5, but the approximation shows small dis-
g 9 : k—t_{(;o:(’/egg crepancies from exact results for large amplityder for
% . LS ,__“__\K;O((WXKB _________ | large modulusk.
% .
c 7r
£ IHere, the exact calculation means the result from analyses of
@ 6l N (cnoidal waversoliton) solutions of the NLSE, see Rd#]. Espe-
Ty i aa—" cially, the soliton velocity was obtained using a most important
5 05 1 15 2 25 term and neglecting other unimportant terps( x/2K) in Eq. (5)
CNW amplitude of Ref.[8]]. These neglected terms would have the effect of bend-

ing the curves in Fig. 4, especially at largevalues. It results in
FIG. 4. Results from the finite cnoidal wave packex, vs p for discrepancies between plots of exact calculations and experimental
k=0, 0.72, 0.96 withA=1.84, w=—0.7. values(typically, at largek).
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FIG. 5. (& Soliton velocity vs amplitudeg of cnoidal waves fok=0.8, (b) soliton velocity vs modulusk of cnoidal waves fomp
=1.5; solid lines from the WKB-type approximation, dashed line from the exact calculation.

Our expression for the soliton velocity in E@) becomes fect. As our formula in Eq(4) is valid even for large, Eq.
more simplified for the limitp—0 (here we restore and  (12) can be used to estimate the error upQ¢p?) in the
vg), Which is results of Ref[9].
All these considerations show the validity of the WKB-
4p? 16A%p type approximation in describing the collision of the soliton-
2 o2t e ozs) (1D continuous wave packet. This description can be applied to
Ac+wg  (A“+wpg) . packet. T p . pp
the scattering of multisolitons from a continuous wave
wherewg=w+v/2. Thus, the change in velocity of a soliton Packet, too. In this case, each soliton experiences a change of
when it encounters a wave packet is the velocity during the collision with a continues wave
packet, while the wave packet itself suffers no essential
change. This configuration may account for interesting ex-
perimental observations such as forming of soliton clusters
in a mode locked fiber ring las¢®]. Possible extension of
' our result to more general collisions such as the scattering of
two continuous wave packets should involve the consider-
(12 ation of finite-gap solutions of the NLSH4]. The difficulty
i _ ) in this program may be in treating the Riemathfunction as
whereB=1/vy+v. The first term of the right-hand side of \ye|| a5 the so-called effectivization problem. The stability

the equation is very similar to the expression which was used 5 \ysis of the collision process is another important prob-
to study the scattering of a soliton from a sinusoidal wavga, 1o be done with exact solutions of the NLSE and is
packet in the limit ofp— 0 [9]. Especially, it emphasizes on agarved for future study.

the fact that the change in velocity is proportional to the

1 1 4

vt —— =Wwpg
Ug Usol+cw

AUsoI:UsoI_Usol|p:0
_ Awgp? ( 4A%p%  Awgp?
B2(A%+wg) |~ (A*+wj)? B(AZ+wp)

intensity of the wave packetH(p?), i.e., a second-order ef- This work was supported by the Brain Korea 21 Project.
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