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Interaction of a soliton with a continuous wave packet
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We analyze the scattering of a soliton from a continuous wave packet of arbitrary shape in a fiber, theoreti-
cally as well as numerically. Solitons recover their original shapes and velocities after collisions and the effect
of collisions is described by the change of velocities of solitons. The theoretical predictions based on a
WKB-type approximation are in a good agreement with numerical results.
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One of the important problems in soliton communicatio
is the soliton-continuum interaction. It was found that t
collision of a wave packet with a soliton shows a change
the soliton position by the perturbing wave packet. This
fect may be important in understanding phenomena suc
the Gordon-Haus jitter@1#, bit errors in lumped filters@2,3#,
and the pulse self-ordering in soliton fiber ring lasers@4,5#.
Gordon@6# was the first to study the soliton-continuum sy
tem using the perturbed nonlinear Schro¨dinger equation. But
the perturbation on the soliton was a second-order effect
did not show up in his study.

More general treatment of this problem, especially for
case of high-intensity wave packets, is shown in Ref.@7#
based on the exact solution of the soliton-continuum wave
the nonlinear Schro¨dinger equation~NLSE!. They analyze
the scattering of a soliton from a continuous wave pac
having aconstantamplitude in a fiber, theoretically as we
as numerically. Solitons were found to recover their origin
shapes and velocities after collisions, while shapes of c
tinuous waves are nearly preserved during collisions. T
describe the effect of collisions by the change of velocities
solitons and found that the theoretical predictions are i
good agreement with numerical results. This type of
proach was further developed using another interesting s
tion of the NLSE, the collision of soliton-cnoidal wave,
Ref. @8#, and was used to describe the soliton interaction w
nonconstant continuous waves having moderately strong
tensity.

In this respect, it is required to broaden the range of t
oretical applicability of above approach to more general ty
of scattering phenomena, that is, the soliton scattering f
arbitrary-shapedwave packets havingfinite width. In fact, a
research along this line was already pursued by Hauset. al.
@9#. They analyze the effect starting from the two-solit
solution and take the limit of~low intensity and! broad width
of one soliton, and they infer the velocity change of t
soliton to arbitrary-shaped but low-intensitywave packets.
Note that the collision effect of two solitons has been d
scribed by the phase and time shift. So this notion was
preserved in scatterings of soliton from wave packets, wh
agrees with the results in Refs.@7,8#.
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In this paper, we study the scattering of soliton wi
arbitrary-shaped wave packets, starting from the solit
continuum solution. We introduce a WKB-type approxim
tion for the theoretical interpretation of these scatterings. O
intention is to generalize the result of Ref.@9# such that it has
no limitation of low-intensity wave packets. Thus, the ma
effect of collisions with a wave packet of general shape c
be ascribed to the change of the velocity of solitons dur
collisions. This approximation explains numerical resu
very well except for wave packets having a rapidly varyi
amplitude or having very high intensity. Note that there ex
no known exact solutions for collisions of solitons wi
arbitrary-shaped wave packets in the NLSE except
soliton-cnoidal wave~including the continuum! case.

We first start with numerical analyses. Figure 1 sho
numerical results simulating typical collisions of soliton
with wave packets having shape of~a! Gaussian type and~b!
cosine type. These figures show that solitons restore t
original shapes and velocities after collisions, even thou
they lose their identities during collisions. Despite their i
trinsic instabilities@10#, finite wave packets were also foun
to maintain their identities more or less.

The propagation of light waves in a fiber is described
the NLSE

i
]

]x
c1

]2

]T2 c12ucu2c50, ~1!

where T[t2x/vg is the retarded time. As an integrab
equation, the NLSE has many important solutions. Most w
known is the soliton solution,

csol~T,x!5A sech~2Awx1AT!

3exp~2 iw2x1 iA2x2 iwT!. ~2!

Another important one is the continuous wave,

ccw~T,x!5p exp~ i @vT/212p2x2v2x/4# !, ~3!

where v is the velocity of the continuous wave. Recent
there appears a nonlinearly superposed solution of~soliton1
continuous wave! system@7# that was constructed using th
Darboux-Bäcklund transformation~DBT! @11#. This solution
was found to be convenient for application to real physi
©2003 The American Physical Society02-1



rier-

BRIEF REPORTS PHYSICAL REVIEW E67, 017602 ~2003!
FIG. 1. Soliton scatterings from a finite~a! Gaussian,~b! cosine wave packet. They are obtained using the split-step fast-Fou
transform algorithm.

FIG. 2. Results from the finite Gaussian wave packet~a! Dx vs D for p50.5, 1.0, 1.5, 2.0;~b! Dx vs p for D54.5. Soliton parameters
for both figures areA51.84, w520.7.

FIG. 3. Results from the finite cosine wave packet~a! Dx vs D for p50.5, 1.0, 1.5, 2.0, 2.5;~b! Dx vs p for D54.5. Soliton parameters
for both figures areA51.84, w520.7.
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situations. Especially, its DBT parameter2(w1 iA)/2 de-
scribes the amplitudeA and the velocity of the soliton
vg /(122vgw) in Eq. ~2! when it is located outside the con
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tinuous wave. The velocity of the soliton during its collisio
with the continuous wave changes to~for simplicity, we
studyv50,vg5` case!
vsol1cw52Re@A~A2 iw !224p2#/Re@A~A2 iw !224p2~w1 iA !#. ~4!
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We now introduce a WKB-type approximation. It describ
the velocity of a soliton in a continuous wave as

vWKB~T!;vsol1cw„~p5p~T!…, ~5!

when a continuous wave has slowly varying amplitudep(T).
Below, we will present some numerical results that show
validity of the WKB-type approximation. Figure 2 plots th
moving distanceDx of a soliton in a time interval2(D
1d);(D1d) passing through a Gaussian wave packet,

p~T!5p exp~2T2/D2! for D,T,D,

50 otherwise. ~6!

Below we will taked53. The dotted curve is the result o
numerical analyses. Theoretical values~solid line! are ob-
tained using the WKB-type approximation such that

Dx5E
2D2d

D1d

vWKB~T!dT. ~7!

Numerical results are in well accordance with theoretical v
ues for wide range ofD in the plot ~a! of Dx vs D (p
50.5,1,1.5,2! and for wide range ofp in the plot ~b! of Dx
vs p (D54.5) without any fitting parameters@12#. Note that
there are regions, for example, largeD region for p52 in
Fig. 2~a!, where the strong modulational instability of th
continuous wave does not permit the identification of
soliton any more. Figure 3 plots the result from the cos
wave packet,

FIG. 4. Results from the finite cnoidal wave packet,Dx vs p for
k50, 0.72, 0.96 withA51.84, w520.7.
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p~T!5p cos„pT/~2D !… for 2D,T,D,

50 otherwise. ~8!

Figure 4 plots the result from the cnoidal wave packet,

p~T!5p dn~pT,k!. ~9!

Contrary to the previous cases, there exist exact theore
results for the cnoidal wave packet. The numerical res
~dotted curves! as well as the exact theoretical results a
from Ref. @8# and we add the results from the WKB-typ
approximation. This figure shows that the exact theoret
calculation in Ref.@8# gives essentially the same results wi
the WKB-type approximation using Eq.~4! except for largek
values (k50.96). Note that the WKB-type approximatio
results in a large deviation from the exact calculation ak
50.96, because the amplitude of cnoidal wave fluctua
very fast and the WKB-type approximation becomes poor
this case (k: the modulus of the Jacobi function!. On the
other hand, the WKB-type approximation is in good acc
dance with the exact calculation as the modulusk becomes
small, where the amplitude of cnoidal wave varies mild
and the WKB-type approximation works well.~At k50, the
cnoidal wave becomes a plain wave!.1

Finally, Fig. 5 shows the average velocity

vav5
1

2KE2K

K

vWKB~T!dT ~10!

of a soliton inside the cnoidal wave calculated by the WK
type approximation~solid line!, which is compared with the
exact result from Ref.@8# ~dashed line! @13#. It reveals that
the WKB-type approximation is in well accord with the e
act results untilp;1.4 for the case ofk50.8 or k;0.6 for
the case ofp51.5, but the approximation shows small di
crepancies from exact results for large amplitudep or for
large modulusk.

1Here, the exact calculation means the result from analyse
~cnoidal wave1soliton! solutions of the NLSE, see Ref.@8#. Espe-
cially, the soliton velocity was obtained using a most importa
term and neglecting other unimportant terms@u i(x/2K) in Eq. ~5!
of Ref. @8##. These neglected terms would have the effect of be
ing the curves in Fig. 4, especially at largek values. It results in
discrepancies between plots of exact calculations and experim
values~typically, at largek).
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FIG. 5. ~a! Soliton velocity vs amplitudep of cnoidal waves fork50.8, ~b! soliton velocity vs modulusk of cnoidal waves forp
51.5; solid lines from the WKB-type approximation, dashed line from the exact calculation.
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Our expression for the soliton velocity in Eq.~4! becomes
more simplified for the limitp→0 ~here we restorev and
vg), which is

v1
1

vg
2

1

vsol1cw
5wBS 4p2

A21wB
2 1

16A2p4

~A21wB
2 !3D , ~11!

wherewB5w1v/2. Thus, the change in velocity of a solito
when it encounters a wave packet is

Dvsol5vsol2vsolup50

5
4wBp2

B2~A21wB
2 ! S 11

4A2p2

~A21wB
2 !21

4wBp2

B~A21wB
2 ! D ,

~12!

whereB51/vg1v. The first term of the right-hand side o
the equation is very similar to the expression which was u
to study the scattering of a soliton from a sinusoidal wa
packet in the limit ofp→0 @9#. Especially, it emphasizes o
the fact that the change in velocity is proportional to t
intensity of the wave packet (5p2), i.e., a second-order ef
tt.

n

tt.

n
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fect. As our formula in Eq.~4! is valid even for largep, Eq.
~12! can be used to estimate the error up toO(p4) in the
results of Ref.@9#.

All these considerations show the validity of the WKB
type approximation in describing the collision of the solito
continuous wave packet. This description can be applied
the scattering of multisolitons from a continuous wa
packet, too. In this case, each soliton experiences a chan
the velocity during the collision with a continues wav
packet, while the wave packet itself suffers no essen
change. This configuration may account for interesting
perimental observations such as forming of soliton clust
in a mode locked fiber ring laser@9#. Possible extension o
our result to more general collisions such as the scatterin
two continuous wave packets should involve the consid
ation of finite-gap solutions of the NLSE@14#. The difficulty
in this program may be in treating the Riemannu function as
well as the so-called effectivization problem. The stabil
analysis of the collision process is another important pr
lem to be done with exact solutions of the NLSE and
reserved for future study.
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